New molecular determinants controlling the accessibility of ouabain to its binding site in human Na,K-ATPase alpha isoforms.
نویسندگان
چکیده
Inhibition of Na,K-ATPase alpha2 isoforms in the human heart is supposed to be involved in the inotropic effect of cardiac glycosides, whereas inhibition of alpha1 isoforms may be responsible for their toxic effects. Human Na,K-ATPase alpha1 and alpha2 isoforms exhibit a high ouabain affinity but significantly differ in the ouabain association and dissociation rates. To identify the structural determinants that are involved in these differences, we have prepared chimeras between human alpha1 and alpha2 isoforms and alpha2 mutants in which nonconserved amino acids were exchanged with those of the alpha1 isoform, expressed these constructs in Xenopus laevis oocytes, and measured their ouabain binding kinetics. Our results show that replacement of Met119 and Ser124 in the M1-M2 extracellular loop of the alpha2 isoform by the corresponding Thr119 and Gln124 of the alpha1 isoform shifts both the fast ouabain association and dissociation rates of the alpha2 isoform to the slow ouabain binding kinetics of the alpha1 isoform. The amino acids at position 119 and 124 cooperate with the M7-M8 hairpin and are also responsible for the small differences in the ouabain affinity of the ouabain-sensitive alpha1 and alpha2 isoforms. Thus, we have identified new structural determinants in the Na,K-ATPase alpha-subunit that are involved in ouabain binding and probably control, in an alpha isoform-specific way, the access and release of ouabain to and from its binding site.
منابع مشابه
New Molecular Determinants Controlling the Accessibility of Ouabain to Its Binding Site in Human Na,K-ATPase Isoforms
Inhibition of Na,K-ATPase 2 isoforms in the human heart is supposed to be involved in the inotropic effect of cardiac glycosides, whereas inhibition of 1 isoforms may be responsible for their toxic effects. Human Na,K-ATPase 1 and 2 isoforms exhibit a high ouabain affinity but significantly differ in the ouabain association and dissociation rates. To identify the structural determinants that ar...
متن کاملO-13: Na+/K+-ATPase Alpha1 Isoform Mediates Ouabain-Induced Expression of Cyclin D1 and Proliferation of Rat Sertoli Cells
Background: Novel roles for the interaction of cardiotonic steroids to Na+/K+-ATPase have been established in recent years. The aim of the present study was to investigate the intracellular signaling events downstream the action of ouabain on Na+/K+-ATPase in Sertoli cell obtained from immature rats. Treatment of Sertoli cells with ouabain (1 μM) induced a rapid and transient increase in the ex...
متن کاملTransport and pharmacological properties of nine different human Na, K-ATPase isozymes.
Na,K-ATPase plays a crucial role in cellular ion homeostasis and is the pharmacological receptor for digitalis in man. Nine different human Na,K-ATPase isozymes, composed of 3 alpha and beta isoforms, were expressed in Xenopus oocytes and were analyzed for their transport and pharmacological properties. According to ouabain binding and K(+)-activated pump current measurements, all human isozyme...
متن کاملThe highly conserved cardiac glycoside binding site of Na,K-ATPase plays a role in blood pressure regulation.
The Na,K-ATPase contains a binding site for cardiac glycosides, such as ouabain, digoxin, and digitoxin, which is highly conserved among species ranging from Drosophila to humans. Although advantage has been taken of this site to treat congestive heart failure with drugs such as digoxin, it is unknown whether this site has a natural function in vivo. Here we show that this site plays an importa...
متن کاملO-10: A Marked Animal-Vegetal Polarity in The Localization of Na+,K+-ATPase Activity and Its Down-Regulation Following Progesterone-Induced Maturation
Background: Polarized cells are key to the process of differentiation. Xenopus oocyte is a polarized cell that has complete blue-print to differentiate 3 germ layers following fertilization, as key determinant molecules (Proteins and RNAs) are asymmetrically localized. The objective of this work was to localize Na+, K+-ATPase activity along animal-vegetal axis of polarized Xenopus oocyte and fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 65 2 شماره
صفحات -
تاریخ انتشار 2004